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Figure S1: Impact of outlier threshold on slice retention and slice similarities.
Impact of outlier rejection threshold β on the slice similarities Sim(yi

k , Ai
kxi)

for SRR (M) for the respectively remaining K i
β-slices at iteration i = 3. The

error bars indicate the mean and standard deviation. A good balance between
a high number of retained slices and high slice similarity (indicating a good
self-consistency of the obtained SRR) appears to be around β = 0.8.

Sensitivity of SRR algorithm to Outlier-threshold and Input
Masks

Experiments were performed to investigate the sensitivity
of the proposed high-resolution reconstruction method to the
outlier-threshold β and the input fetal brain masks. Fig. S1
shows how the outlier-threshold β impacts the number of re-
tained slices used for solving the SRR problem (5). The higher
β the higher and less variant the volumetric self-consistency
becomes as expressed by the slice similarities Sim(yi

k, Ai
kxi)

after the final iteration i = 3. However, the number of slice
rejections substantially increases beyond β = 0.8 whereas the
NCC of measured slice similarities plateaus. To strike a bal-
ance between conservative slice retention and effective outlier
rejection we select β = 0.8 as the defining outlier-threshold for
our method. Fig. S2 illustrates the slice rejection performance
based on different input masks. In case of manual masks, typ-
ically well beyond 90 % of all slices are retained for the volu-
metric reconstruction. Automatically obtained masks lead to a
higher rate of slice rejections but result in an overall compara-
ble number of remaining slices for the SRR step. Thus, slices
with false-positives segmentations are automatically detected
and rejected by the SRR algorithm.

Convergence of Motion Correction Estimates for Iterative
Two-Step Algorithm

Fig. S3 shows the convergence of estimated motion cor-
rection parameters for each registration step within the two-
step motion-correction/volumetric reconstruction cycle. In
particular, it shows that after the third slice-to-volume reg-
istration (SVR) step, parameter changes become negligible,
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Figure S2: Impact of outlier threshold for different inputs masks. Compari-
son of remaining slices given by K i

β at iteration i = 3 for the outlier-robust
SRR algorithm using different input masks. Automatic segmentations lead to
a higher rate of slice rejections compared to using the manual input masks but
result in an overall comparable number of remaining slices. Thus, slices with
false-positive segmentations are automatically detected and rejected by the SRR
algorithm.
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Figure S3: Convergence of motion correction parameters for the two-step it-
erative SRR algorithm. Mean and standard deviation of the `2-norm of incre-
mental translation δtx, δty, δtz (mm) and rotation δrx, δry, δrz (degree) parame-
ters are shown for the volume-to-volume registration (VVR) and the individual
slice-to-volume registration (SVR) iteration (i) steps for all 39 cases based on
SRR (S). After three two-step motion-correction/volumetric-reconstruction cy-
cles, parameter changes become negligible.
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therefore suggesting convergence of the two-step motion-
correction/volumetric-reconstruction algorithm at this point.

Assessment of Intensity Correction Steps

To investigate the influence of the proposed intensity cor-
rection steps on the reconstruction results, SRR (S) outcomes
are computed for four intensity correction scenarios: (i) no
intensity correction of individual stacks (”Original”), (ii) bias
field correction (N4ITK, Tustison et al. (2010)) for all stacks
(”BFC”), (iii) intensity correction using linear regression with
target stack reference values (”IC”), and (iv) IC following BFC
(”IC◦ BFC”) as the proposed method. Based on each configu-
ration, all SRR (S) outcomes were computed and compared in
the template space whereby the SRR template-space outcome
of IC ◦ BFC was chosen for template-space alignment for all
the remaining outcomes. Quantitative comparisons were per-
formed using NCC, SSIM and RMSE whereby only the masked
voxels associated with the high-resolution mask obtained by
the manual-mask reconstruction SRR (M) outcome was used
for evaluation (Fig. S4). All reconstructions were successful
for all 39 cases regardless of the intensity correction scenario,
which is also indicated by the consistently high absolute simi-
larity values suggesting little sensitivity of SRR (S) to the per-
formed intensity correction steps. This observed robustness of
motion correction against image intensity changes can in part
be explained by the choice of NCC as similarity measure for
the registration steps, which is insensitive to the performed lin-
ear intensity correction (IC). With respect to the overall recon-
struction quality, however, statistical tests based on Kruskal-
Wallis and post hoc Dunn’s tests indicate that both the bias field
correction and subsequent linear intensity correction steps lead
to statistically significant improvements towards more coherent
intensity values of the obtained volumetric reconstructions.

Volume-matched vs Age-matched Template Space Align-
ment

The success rate of the proposed template-space alignment
approach, i.e principal brain axes (PBA)-initialized block-
matching registration, was tested for different template selec-
tions from the spatiotemporal atlas (Gholipour et al., 2017).
Four different template space selections were considered: (i)
volume-matched template (proposed), (ii) gestational age-
matched template (GA, in weeks) as proposed in (Tourbier
et al., 2017), (iii) template corresponding to one week older
than gestational age-matched template (GA + 1), and (iv) tem-
plate corresponding to one week younger than gestational age-
matched template (GA − 1). A template space alignment was
considered successful if a correct alignment in the standard
anatomical planes was confirmed visually. Table S1 illustrates
that the proposed volume-matched template selection leads to
more robust template-space alignments compared to using the
age-matched template. By systematically underestimating the
gestational age of the template by one week, the same success
rate can be achieved. This supports the argument that brains

Table S1: Comparison of template-space alignment success rates of the pro-
posed template space alignment approach based on using the volume-matched
template (proposed), the gestational age-matched template (GA, in weeks), and
the templates associated with one week older and younger than GA.

SRR (S) SRR (M)
A B1 B2 A B1 B2

GA + 1 7 13 14 7 14 16
GA 7 13 15 7 16 16
GA − 1 7 15 15 7 16 16
volume-matched 7 15 15 7 16 16
Total number of cases 7 16 16 7 16 16

affected by spina bifida appear typically smaller than normal
brains of the same age. Importantly, however, the high success
rates across actual template selections highlight the high robust-
ness of the proposed template-space alignment approach based
on PBA-initialized block-matching.

Assessment of Volumetric Self-Consistency

In addition to the performed slice similarity comparisons
Sim(yi

k, Ai
kxi) after the final SVR-SRR iteration (i = 3) us-

ing SSIM and PSNR in Main Manuscript Fig. 17, we also
performed comparisons using NCC, normalized mutual infor-
mation (NMI), root mean squared error (RMSE) and mean
absolute error (MAE). Fig. S5 summarizes the comparisons
which corroborate the findings using SSIM and PSNR that SRR
(S)/(M) appear of similar volumetric self-consistency.

Extended Qualitative Comparison of Reconstruction Meth-
ods

Additional visual comparisons of the obtained high-
resolution reconstructions are provided in Figs. S6 to S8 as ex-
tension to the ones in Main Manuscript Figs. 14, 19 and 20 to
illustrate the effectiveness of our proposed outlier-robust SRR
framework. In particular, it shows the ability to reconstruct
clear tissue boundaries with high anatomical accuracy even in
case of challenging, artifact-corrupted input data.

Extended Clinical Evaluation

Figs. S9 and S10 represent an extension to Main Manuscript
Fig. 18 and provide a more detailed comparison of the individ-
ual scores regarding anatomical clarity and SRR quality.

Extended Comparison of SRR Quality vs Input Data

Figs. S11 and S12 provide additional comparisons to Main
Manuscript Fig. 21 to show obtained high-resolution 3D recon-
structions for different input data scenarios.
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Figure S4: Quantitative comparison of the obtained SRR (S) outcomes in the template space for all 39 cases using no intensity correction (”Original”), bias field
correction (”BFC”), and linear intensity correction (”IC”) against the outcome of the proposed approach, i.e. IC following BFC (”IC◦ BFC”). All configurations
for the SRR (S) outcomes apart from Original vs. IC are statistically significant based on Kruskal-Wallis with post hoc Dunn’s tests for all evaluated similarity
measures.
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Figure S5: Slice similarities after the final SVR-SRR iteration. Quantitative comparison of different reconstruction methods based on Sim(yi
k , Ai

kxi) after the
final SVR-SRR iteration (i = 3). A ∗ denotes a significant difference compared to SRR (M) within each group based on Kruskal-Wallis with post-hoc Dunn tests
(p < 0.05). Thus, SRR (S) and SRR (M) appear of similar volumetric self-consistency as quantified by the similarities between motion-corrected and respectively
projected high-resolution volume slices.
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Figure S6: Qualitative comparison of reconstruction methods in the template
space. The comparison shows the template space reconstructions of a group A
subject (normal, GA = 30 weeks) based on 7 low-resolution input stacks (sub-
ject space SRRs are shown in Main Manuscript Fig. 14b). An original stack
(linearly resampled) with resolution of 0.742 × 3 mm3 is provided for refer-
ence. Red arrows indicate example differences in the reconstruction outcomes
compared to Kainz et al. (M).
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Figure S7: Qualitative comparison of reconstruction methods in the template
space. The comparison shows the template space reconstructions of a Group
B1 subject (pre-surgical SB, GA = 23 weeks) based on 6 low-resolution input
stacks. An original stack (linearly resampled) with resolution of 0.742 ×3 mm3

is provided for reference. Red arrows show differences between SRR (S) and
Kainz et al. (M).
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Figure S8: Qualitative comparison of reconstruction methods in the template
space. The comparison shows the template space reconstructions of a group
B1 subject (pre-surgical SB, GA = 23 weeks) based on 6 low-resolution in-
put stacks. An original stack (linearly resampled) with resolution of 0.392 × 4
mm3 is provided for reference. It represents the only case where SRR (M)
is markedly better than SRR (S). Green arrows indicate differences between
SRR (M) and SRR (S). Red arrows show differences between SRR (S) and
Kainz et al. (M).
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Figure S9: Summary of clinical evaluation for anatomical clarity scores. Two
radiologists performed a qualitative assessment of the obtained high-resolution
reconstructions regarding anatomical clarity involving 39 cases. Scores indi-
cate how well cerebellar structure (CS), cerebral aqueduct and interhemispheric
fissure (CAIF) and longitudinal cerebral fissure (LCF) are visualized in each
image with ratings 0 (structure not seen), 1 (poor depiction), 2 (suboptimal vi-
sualization; image not adequate for diagnostic purposes), 3 (clear visualization
of structure but reduced tissue contrast; image-based diagnosis feasible), and
4 (excellent depiction; optimal for diagnostic purposes). A ∗ denotes a signif-
icant difference compared to SRR (M) based on a Wilcoxon signed-rank test
(p < 0.05).
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Figure S10: Summary of clinical evaluation for SRR quality scores. Two ra-
diologists performed a qualitative assessment of the obtained high-resolution
reconstructions regarding SRR quality involving 39 cases. The SRR quality
was described by the visible artifacts and blur scores with ratings 0 (lots of arti-
facts/blur) to 2 (no artifact/blur). A ∗ denotes a significant difference compared
to SRR (M) based on a Wilcoxon signed-rank test (p < 0.05).
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Figure S11: Comparison of obtained reconstructions in the template space for
six different input data configurations using the case with the highest number
of nine available input stacks (B2 subject, post-surgical SB, GA = 27 weeks).
The horizontal axis for the quantitative comparisons is sorted in ascending order
based on the NCC outcome, whereby ”3a+1c+3s” constrained by its mask was
used as reference. Due to a high rate of axial slice rejections for ”1a+1c+1s”
more than these three approximately orthogonal stacks are needed to achieve a
high anatomical detail in all three anatomical planes.
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Figure S12: Comparison of obtained reconstructions in the template space for
six different input data configurations using the case with the highest number
of nine available input stacks (A subject, normal, GA = 33 weeks). The hori-
zontal axis for the quantitative comparisons is sorted in ascending order based
on the NCC outcome, whereby ”2a+2c+1s” constrained by its mask was used
as reference. Using at least three stacks in three different orientations leads to a
high anatomical detail in all three anatomical planes. Increasing the number of
stacks per orientation can further increase the reconstruction quality.
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